环境温度是影响气体传感器测量结果的主要因素之一
如今,市场上绝大多数的气体传感器对环境温度都是敏感的。其原因是无论是化学反应、电子元器件,还是无机和有机材料,性能参数都会随环境温度的变化而变化。最终造成气体传感器输出的电流和电压的变化。
不同气体传感器的使用温度范围是怎样的?
催化燃烧传感器(LEL):
LEL的使用温度范围很宽,从-40℃到70℃都可以使用。中国的消防认证所要求的温度范围就是从-40℃到70℃。
电化学气体传感器(EC):
电化学气体传感器温度范围稍微窄一点,一般是-20℃到55℃。型号比较新的电化学气体传感器可以做到在-40℃工作。但是,电化学气体传感器无法长时间在高温环境工作,主要是因为传感器内部有酸性或碱性的液体,在高温的环境中水分会蒸发或迅速增加,从而造成电解液损失或漏液。最终的现象就是响应时间T90变长,回零时间变长,灵敏度变低,甚至无响应。对传感器来说,最恶劣的情况是高温低湿(HTLH)和高温高湿(HTHH)。
非色散红外传感器(NDIR):
NDIR气体传感器的温度范围很宽,可以达到军工级-55℃到100℃以上。在外太空探测气体就靠它。
光离子化传感器(PID):
PID传感器的温度范围比较窄,做不到像NDIR一样。一般能够接受的就是-25℃到55℃。
金属氧化物半导体传感器(MOS):
MOS传感器的温度范围可以很宽,但是温漂相当严重。它的灵敏度的数量级和温度系数的数量级之间是可以比拟的,因此MOS并不适合用在高温和低温环境,只使用于普通的室温环境中。
环境温度是如何影响气体浓度测量结果的?
催化燃烧传感器(LEL):
先回顾一下LEL传感器的原理:催化珠是铂金丝缠绕而成的,铂金丝的电阻是随温度变化而变化的,温度越高,电阻越大。当铂金丝的温度在四百多度的时候,催化珠表面的催化剂活性开始显着。这时,当催化剂接触甲烷的时候,甲烷开始燃烧,将热量传导给铂金丝,铂金丝电阻变大。
了解了原理,此问题就好解答了:当环境温度升高或降低的时候,催化珠中铂金丝的温度也会有变化。虽然催化珠是配对使用,消除掉了一些温度变化带来的影响,那也仅仅对于传感器零点有效,灵敏度还是会随温度变化而变化的。
电化学气体传感器(EC):
电化学气体传感器内部是发生的氧化还原反应。凡是化学反应,反应速度都会随温度变化而变化。普遍的规律是,温度越低,传感器灵敏度越低,温度越高,传感器灵敏度越高。
在所有的电化学气体传感器中,原电池型的氧气传感器(氧电池)的温漂是最小的。从+20℃降温到-20℃,其灵敏度仅下降约10%。氢气传感器的温漂是最大的,从+20℃降温到-20℃,其灵敏度下降约80%。
非色散红外传感器(NDIR):
NDIR气体传感器信号随环境温度变化的因素比较多,包括:光源的光谱、探测器、滤光片温度系数、运放温度系数、电阻和电容温度系数等诸多因素。当这些因素综合作用的时候,使得NDIR的温度补偿变得非常复杂。这也是NDIR气体传感器价格高的原因之一。
光离子化传感器(PID):
PID的温度漂移主要由电子元器件的温度漂移带来。气体物质的电离能几乎不受温度变化的影响。这些电子元器件包括运放、电阻、电容、变压器线圈。
需要注意的是,当温度低到一定程度,紫外灯(UVLamp)就会点不亮。更致命的是,紫外灯的两个部件——灯管和透光片会因为热膨胀系数不同而发生裂缝。这样紫外灯就因为漏气而报废了。
金属氧化物半导体传感器(MOS):
MOS传感器的温漂是相当大的,这也是MOS传感器不适合工业安全,而只适用于民用环境的主要原因之一。您可能会说,温漂大,做温度补偿不就可以了吗?做过工程师的朋友们都会清楚,让一只温漂超过±30%的传感器在高低温下做到±3%的精度,几乎是一件不可能的事情。
在民用环境,温度变化不大,如10℃-40℃,而且要求精度不高,仅仅要求报警的情况下,MOS的确是不错的低成本选择。
文章来源于网络,若有侵权,请联系我们删除。